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Abstract

This paper introduces an integrated local surface de-
scriptor for surface representation and object recognition.
A local surface descriptor is defined by a centroid, its sur-
face type and 2D histogram. The 2D histogram consists
of shape indexes, calculated from principal curvatures, and
angles between the normal of reference point and that of its
neighbors. Instead of calculating local surface descriptors
for all the 3D surface points, we only calculate them for fea-
ture points which are areas with large shape variation. Fur-
thermore, in order to speed up the search process and deal
with a large set of objects, model local surface patches are
indexed into a hash table. Given a set of test local surface
patches, we cast votes for models containing similar surface
descriptors. Potential corresponding local surface patches
and candidate models are hypothesized. Verification is per-
formed by aligning models with scenes for the most likely
models. Experiment results with real range data are pre-
sented to demonstrate the effectiveness of our approach.

1. Introduction
This paper addresses recognition of 3D free-form objects

from range images. In 3D object recognition, the key prob-
lems are how to represent free-form surfaces effectively and
how to match the surfaces using the selected representa-
tion. In the early years of 3D computer vision, the repre-
sentation schemes included wire-frame, constructive solid
geometry, extended gaussian image, generalized cylinders,
planar faces and superquadric. All of these are not highly
suitable for representing free-from surfaces.Recently, re-
searchers have been focusing on using local surface prop-
erties to represent the shape of objects and recognize free-
form objects in range images [3]. They include the splash
representation [11], the point signatures [4], the spin im-
age representation [9], the spherical spin image representa-
tion [5], the surface point signatures [12], and the harmonic
shape images [13].

In this paper, we introduce an integrated local surface
descriptor for 3D object representation. We calculate the
local surface descriptors only for the feature points which
are areas with large shape variation measured by shape in-
dex [6]. Our approach starts from extracting feature points
from range images, then define the local surface patch as
the feature point and its neighbors, next calculate local sur-
face properties which are 2D histogram, surface type and

the centroid. The 2D histogram consists of shape indexes
and angles between the normal of reference point and that
of its neighbors. For every local surface patch, we compute
the mean and standard deviation of shape indexes and use
them as indexes to a hash table. By comparing histograms
and surface types and casting the votes to the hash table, we
find the potential corresponding local surface patches and
potential models. Finally, we estimate the transformation
based on the corresponding surface patches and calculate
the match quality between the hypothesized model and test
image.

2. Technical approach
� Feature points extraction: In our approach, feature

points are defined as areas with large shape variation mea-
sured by shape index calculated from principal curvatures
[6]. In order to estimate curvatures, we fit a quadratic sur-
face ���� �� � ��� � ��� � ��� � �� � �� � � to a lo-
cal window and use the least square method to estimate the
parameters of the quadratic surface, and then use differen-
tial geometry to calculate the surface normal, Gaussian and
mean curvatures and principal curvatures [2, 7].

Shape index (	�), a quantitative measure of the shape of
a surface at a point 
, is defined by (1) where �� and �� are
maximum and minimum principal curvatures respectively.
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Within a local window, the center point is marked as a
feature point if its shape index 	� satisfies the following
condition:
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where �� � parameters controll feature points selection and
� is the number of points in the local window. The feature
points extraction results are shown in Figure 1 where the
feature points are marked by red point sign. From Figure 1,
we can clearly see that some feature points corresponding
to the same physical area appear in both image.
� Local surface patches(LSP): We define a “local sur-

face patch” as the region consisting of a feature point P and
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Figure 1. Feature points location in two range
images of the same object as gray scale im-
ages.

its neighbors N. A local surface patch is shown in Figure 2.
The neighbors should satisfy the following two conditions,

� � ������� �� ��� � � �� � 	��

and 
�������� � �� (3)

where � and � are the surface normal vectors at point
� and � . For every LSP, we compute the shape indexes
and normal angles between point P and its neighbors. Then
we can form a 2D histogram. One axis of this histogram
is the shape index which is in the range [0,1]; the other is
the dot product of surface normal vectors at P and N which
is in the range [-1,1]. In order to reduce the effect of the
noise, we use bilinear interpolation when we calculate the
2D histogram [9].

We also compute the centroid of LSPs. For the feature
point, we can get the surface type �� based on the Gaussian
and mean curvatures using (4) [1].

�� � � � ��� � ���� ���� � ��� ���� ���� (4)

where � are mean curvatures and K are Gaussian curva-
tures. Note that a feature point and the centroid of a patch
may not coincide.

Figure 2. Illustration of Local Surface Patch.
In summary, every LSP is described by a 2D histogram,

surface type and the centroid. LSP encodes the geometric
information of a local surface.

� Hash table building: Considering the uncertainty of
location of a feature point, we repeat the above process to
calculate descriptor of local surface patches for neighbors
of feature point P. To speed up the comparison process, we
use the mean and standard deviation of shape index to in-
dex a hash table and insert the corresponding hash bin the

information (model ID, 2D histogram, surface type, the cen-
troid). Therefore, we save model local surface descriptors
into the hash table. For each model object, we repeat the
same process to build the model database. The structure of
the hash table is explained in Figure 3.

Figure 3. Structure of the hash table.

� Recognition
� (a) Comparing local surface patches: Given a test

range image, we extract feature points and get LSPs. Then
we calculate the mean and stand deviation of shape index,
and cast votes to the hash table if the histogram dissimilarity
falls in a preset threshold 	� and the surface type is the same.
Since histogram can be thought of as an approximation of
probability distribution function, it is natural to use the ���
��������� function (5) to measure the dissimilarity [10].

����� � � �
�

�

��� � ���
�

�� � ��
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Where � and � are normalized histograms.
Figure 4 shows an experimental validation that the local

surface patch has the discriminative power to distinguish
shapes. First we generate a local surface patch (Lsp1) for
the lobster object, then compare it to another local surface
patch (Lsp2) corresponding to the same physical area of the
same object imaged at different viewpoints. We find that
they have a low dissimilarity and the same surface type.
However, when Lsp1 is compared to Lsp3 lying in a differ-
ent area, the dissimilarity is high. The experimental results
suggest that the local surface patch can be used for distin-
guishing objects.

Figure 4. Experimental validation of discrimi-
natory power of Local Surface Patches.
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� (b): Grouping corresponding pairs of local surface
patch: After voting, we histogram all hash table entries and
get models which received the top three highest votes. By
casting votes, not only we know which models get higher
votes, but also we know the potential corresponding lo-
cal surface patch pairs. Note that a hash table entry may
have multiple items, we choose the local surface patch from
the database with minimum dissimilarity and the same sur-
face type as the possible corresponding patch. We filter the
possible corresponding pairs based on the geometric con-
straints given below.

������
� ������� � ������

� � ��� (6)

Where ������ and ������
are Euclidean distance between

centroids of two surface patches. For two correspondences
�� � ������� and �� � ������� where � means
test surface patch and � means model surface patch, they
should satisfy (6) if they are consistent corresponding pairs.
Thus, we use geometric constraints to partition the potential
corresponding pairs into different groups. The largest group
would more likely to be the true corresponding pair.

Given a list of corresponding pairs � �
���� ��� � � � � ���, the grouping procedure for every
pair in the list is as follows: Initialize each pair of a group.
For every group, add other pairs to it if they satisfy (6).
Repeat the same procedure for every group. Select the
group which has the largest size.

� (c) Verification: Our verification procedure has two
steps: 1) Estimate rigid transformation; 2) Evaluate the reg-
istration results. For the first step, we calculate the rotation
matrix and translation vector by using quaternion represen-
tation [8]. For the second step, we use match quality defined
below to measure how well the test surfaces are aligned with
model surfaces.

� (d) Match quality: Applying the rigid transformation
to the model object, we get a transformed data set. For every
point in this dataset, we search the closest point in the test
image. If the Euclidean distance between them is less than
��, they are declared as corresponding points. Thus, we can
get the match quality, �	 defined below.

�	 �
� 
� �
���
����� �
����

� 
� �
��� �
��� �
����
(7)

It’s obvious that �	 is in ��� ��. The larger �	 is, the
more likely two objects are. In order to speed up the nearest
point search process, we use k-d tree.

3. Experimental Results
� Data and parameters: We use real range data taken

by Minolta Vivid 700 and we get the data from OSU web
site.1 There are nine objects in our database and they are an-
gel(0), pooh(1),bird(2), buddha(3), dough boy(4), duck(5),
frog(6), lobster(7) and orangedino(8) where the number
represents model ID. The average number of 3D points is
12022. The model objects are shown in Figure 5. We ap-
ply our approach to the single-object and two-object scenes.
The model objects and scene objects are two different views
of objects.

1http://sampl.eng.ohio-state.edu/ sampl/data/3DDB/RID/minolta/

The parameters of our approach are �� � �����, � �
���, �� � ���	, �� � 
����,�� � ��	��, � � ���,
� � ����, and �� � �� � �����. The bin size of the two
dimensions of 2D histogram is 0.05 and 0.04 respectively.
The average size of local surface patch is 246 pixels.

Figure 5. Model objects range images 0-8.

� Single-object scenes: In this test case, we show the ef-
fectiveness of the voting scheme and discriminating power
of LSP in the hypothesis generation. For a given test ob-
ject, feature points are extracted and the properties of LSPs
are calculated. Then LSPs are indexed into the database of
model LSPs. For each model indexed, its vote is increased.
We show the voting results (shown as a percentage of the
number of LSPs in the scene) for the nine objects in Table
1. Note that in some cases the numbers shown are larger
than 100 since some models may get more than one vote.
We can observe that most of the highest votes go to the cor-
rect models. For every test object, we do the verification
for the top 3 models which received the highest votes. The
verification results are listed in Table 2. We show the rela-
tive pose of the test objects and their corresponding models
before the registration in Figure 6(a). The pose results after
registrations are shown in Figure 6(b).

Test/ 0 1 2 3 4 5 6 7 8
Model

0 92 0 45 88 11 53 82 61 16
1 18 75 13 28 3 13 10 18 28
2 20 0 38 33 13 27 16 33 40
3 19 6 16 132 18 23 30 18 27
4 0 3 9 0 31 9 14 3 0
5 8 6 17 25 0 80 37 40 25
6 6 0 25 41 10 67 87 65 25
7 11 6 16 20 22 21 40 86 28
8 14 15 24 6 8 1 24 13 104

Table 1. Voting results for nine models in the
single-object scenes.

� Two-object scenes: We created two-object scenes to
make one object partially overlap the other object by first
properly translating objects and then putting two objects to-
gether. Three two-object scenes and recognition results are
shown in Table 3. In Table 3, the first scene contains model
2 and 6; the second contains model 3 and 7; the third con-
tains model 1 and 8. It’s clearly seen that we recognize
objects correctly.

4. Conclusions

We have presented an algorithm for recognition of 3D
objects in single-object scenes and two-object scenes. The
experimental results show the validity and effectiveness of
our algorithm. We show that the local surface patch is a
good local surface descriptor, since we can get good corre-
sponding pairs based on comparing local surface patches.
Moreover, our approach can deal with a large set of objects
since we use hash table to save model information and se-
lect candidate models by casting votes to the hash table.
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(a) (b)

Figure 6. (a)Test objects with the corresponding models before registration. (b)Test objects with the
correctly recognized models after registration.

Test objects Results (Top 3 matches)

Angel Model ID 0 3 6
Match Quality 97.2%

Pooh Model ID 1 3 8
Match Quality 96.7% 19.1%

Bird Model ID 8 2 7
Match Quality 8.2% 99.7% 30.8%

Buddha Model ID 3 6 8
Match Quality 96.4% 39.8% 25.7%

dough boy Model ID 4 6 5
Match Quality 99.6%

duck Model ID 5 7 6
Match Quality 97.9% 24.1% 43.1%

frog Model ID 6 7 3
Match Quality 99.6% 26.4% 7.2%

lobster Model ID 7 6 8
Match Quality 91.6% 47.7% 35.6%

orangedino Model ID 8 7 2
Match Quality 96.6% 38.5% 48.4%

Table 2. Verification results for single-object
scenes.
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